
1

2

This lecture is not the same as previous ones. I am not teaching you any new
concept, architecture or circuit. Instead, I will go through the entire VERI Lab
Experiment in order that you appreciate what I want you to learn in each of the four
parts.
I will also point out the various pitfalls that students always make each year, and
some of the useful “tricks of the trade”.

3

VERI is organised in four sequential parts, each build upon the previous parts. Each
part has been designed with very clear learning outcomes in mind, and is intended
to take a 3-hour supervised laboratory session.
You need to download various files from the Experiment website in order to do this
experiment. These files can be found on:
http://www.ee.ic.ac.uk/pcheung/teaching/E2_experiment/

4

You MUST use Quartus 16 (known as Quartus Prime) standard edition and NOT
Quartus 13 (known as Quartus II) because version 13 does not support Cyclone V
FPGA chips. I recommend that you create a shortcut on your desktop for
convenience.
Once you started Quartus software, you will eventually see many window panes
appearing in the Quartus window:
Edit window – You should use this to edit all your source files. The editor is basic,
but it is syntax sensitive, so it will highlight Verilog keywords for your.
Message window – This is where you find all the error and warning messages.
Navigation window – This shows the hierarchy of your design and provides a quick
way of exploring various Verilog files.
Status window – This tells you the steps that the Quartus software is taking in order
to produce the final design.
Summary window – This provides a quick summary of the resources being used by
your design – useful to check for overall errors.
Report window – This is where you find out details of the compilation results such
as timing and pin allocations.
IP catalog – This allows you to pick up modules in the component library provided
by Altera, such as ROM, multiplier, FIFO etc.

You must also make sure that you have specified the exact FPGA device used on the
DE1-SoC board. It is 5CSEMA5F31C6 and it is specified using > Assignments >
Device ….

5

Once you have finished creating your design through hardware compilation, we
need to send the bit-stream to the chip via the USB cable. The method of
programming is specified in Hardware Setup, and we specify DE1-SoC [USB].
Next we use “Auto Detect” to find out what FPGA chip is connected, and specify that
we expect to find the 5CSEMA5 chip family. This is one of many different variants of
Cyclone V FPGAs. Each has a different protocol in programming the device.
Then, we have to delete the part of the chip that we are not using – this the ARM
part, known as SOCVHPS. If you were to use the ARM processor (e.g. loading it with
Linux), we would need this line in.
After that, you must select the “sof” file to send the chip.

6

You can find a full list of file types used by Quartus on the Experiment webpage.

7

8

The main goal of Part 1 is to let you get familiar with the entire design process.
Shown here is a summary of all the main steps that you have to go through to create
a working design to send to the DE1-SoC.

9

Part 2 of the Lab is starting to get harder. You will first learn to use Modelsim to
simulate an 8-bit counter. On the way, you will also learn how to combine the
interactive commands your type in the command window in Modelsim into a DO-
file. You then will use this file as the testbench for your circuit.
Next you will extend the 8-bit counter to 16-bit with reset and enable input. You
will also combine this with what you have already done in Part 1 to display the
counter value as decimal number on the displays.
Next, you will find that the counter is counting too fast – you only see 88888 at the
output. You then will add another circuit known as prescaler, which is another
counter that produces a clock tick once every millisecond. This allows you to see
what you see the count value changing.
Then you will create a random number generator and test this on DE1.

10

Optional challenge is quite hard, but should be very satisfying. Do this only if you
have time.

11

Part 3 and Part 4 of VERI use the analogue I/O card with DE1. The I/O card contains
a DAC and a ADC, both 10-bits. These produce an audio output on the right channel
of a 3.5mm socket, and one channel of the analogue input from the other socket.

There is also a low-pass filter, which receives a PWM signal and produces an
analogue output on the left channel of the audio socket. A 5k ohm potentiometer
provides a dc voltage to the other channel of the ADC.

The I/O card is plugged into the 40-way socket on the DE1 board – the socket is the
one that is furthest away from the board edge. Beware that you may not have
aligned the pins correctly. This will no damage anything. If the I/O board is installed
correctly, the GREEN LED will light up when the DE1 board is turned ON.

The communication between the DAC/DAC and the FPGA chip is through serial
interface known as SPI (Serial Peripheral Interface). How exactly SPI works will be
covered in another lecture later.

12

Part 3 will introduce you to many different useful digital components. This includes:
the SPI interface module spi2dac.v, the PWM module pwm.v, the ROM generator,
the multiplier etc. In the end, you will be able to produce at least a fixed frequency
sinewave on both channel of the output socket.

13

We now take another example of a relative complex combinational circuit, and see
how we can specify our design in Verilog.
The goal is to design a circuit that converts an 8-bit binary number into three x 4-bit
binary coded decimal values (i.e. 12 bit).
There is a well-known algorithm called “shift-and-add-3” algorithm to do this
conversion. For example, if we take 8-bit hexadecimal number 8’hff (i.e. all 1’s), it
has two hex digits. Once converted to binary coded decimal (BCD) it becomes 255
(3 BCD digits).

14

Before we examine this algorithm in detail, let us consider the arithmetic operation
of shifting left by one bit. This is the same as a x 2 operation.
If we do it 8 times, then we have multiplied the original number by 256 or 28.
Now if you ignore the bottom 8-bit through a truncation process, you effectively
divide the number by 256. In other words, we get back to the original number in
binary (or in hexadecimal).

15

Our conversion algorithms works by shift the number left 8 times, but each time
make an adjustment (or correction) if it is NOT a valid BCD digit.
Let us consider this example. We can shift the number four time left, and it will give
a valid BCD digit of 7.
However, if we shift left again, then 7 becomes hex F, which is NOT valid. Therefore
the algorithm demands that 3 is added to 7 (7 is larger or equal to 5) before we do
the shift.

16

The rationale of this algorithm is the following. If the number is 5 or larger, after
shift left, we will get 10 or larger, which cannot fit into a BCD digit. Therefore if the
number 5 (or larger) we add 3 to it (after shifting is adding 6), which measure we
carry forward a 1 to the next BCD digit.

17

To recap: the basic idea is to shift the binary number left, one bit at a time,
into locations reserved for the BCD results. Let us take the example of the
binary number 8’h7C. This is being shifted into a 12-bit/3 digital BCD result
as shown above.
After 8 shift operations, the three BCD digits contain respectively: hundredth
digit = 4’b0001, tens digit = 4’b0010 and ones digit = 4’b0100, thus
representing the BCD value of 124.
The key idea behind the algorithm can be understood as follow (see the
diagram in the slide):
1.Each time the number is shifted left, it is multiplied by 2 as it is shifted to
the BCD locations;
2.The values in the BCD digits are the same as as binary if its value is 9 or
lower. However if it is 10 or above it is not correct because for BCD, this
should carry over to the next digit. A correction must be made by adding 6 to
this digit value.
3.The easiest way to do this is to detect if the value in the BCD digit locations
are 5 or above BEFORE the shift (i.e. X2). If it is ≥5, then add 3 to the value
(i.e. adjust by +6 after the shift).

18

In order to understand how to we may implement this converter in hardware,
you have to understand that shifting in hardware is easy. You just need to
connect signals with one bit shift to the left. It DOES NOT need any gates,
just wires!

Now we also need to do the adjust module, which simply performs the
operation:

if (in >= 5) out = in + 3 else out = in

The easiest way to implement such a module is to use a case statement. This
is set as a tutorial problem in Problem Sheet 1.

19

The entire full array is shown here. The shade module is the adjust module (which
we call: add3_ge5).
As I said in the last slide, the easiest way to implement (specify) add3_ge5 is using a
case statement.
The BLUE signal path traces what happens to the least significant bit of the original
number.

20

The full array is more complicated than need be. If we propagate the ‘0’s forward in
the array of gates, you will find those marked with ‘X’ will always have its input less
than 5. In which, output = input in these modules. THIS IS JUST A SET OF
FOUR WIRES.
The only remaining add3_ge5 modules are those shaped in orange.

21

After simplification, here are ALL the remaining add3_ge5 modules for the 8-bit
binary to BCD conversion (bin2bcd8). I have labeled the input ports to add3_ge3
wn[3:0] and the output parts an[3:0] where n is 1 to 7.

22

Assuming that we have designed a module “add3_ge5” to perform the adjustment as
required, the converter can be implemented in Verilog by simply “WIRING UP” the
various modules together.

The interconnections are specified in the wire statements.
The next block is instantiating 7 add3_ge5 modules.
The next block of code is to wire the modules together.
Finally the last statements are to connect up the signals from the modules to the
output ports.

23

The final part (Part 4) really brings everything together. The goal is to use the FPGA
to implement a real-time speech processing system that perform echo simulation.
To start with, you will implement a DO-NOTHING block. This just tests out the
system and takes an analogue input sample, then output it to the earphone.
Nevertheless there are details that need to be taken care of. I will go into more
details nearer the time in order to explain exactly what’s happening.

Finally, the part includes something that CANNOT be done in four lab session, but if
you are really keen in going further it is a real challenge.

Bringing everything you have learned in VERI, you can design a voice corruptor –
some that that makes changes ones speech in a way that is unrecognizable, but it is
still comply understandable.

